|
In mathematics, particularly in functional analysis, a Mackey space is a locally convex topological vector space ''X'' such that the topology of ''X'' coincides with the Mackey topology τ(''X'',''X′''), the finest topology which still preserves the continuous dual. ==Examples== Examples of Mackey spaces include: * All bornological spaces. * All Hausdorff locally convex quasi-barrelled (and hence all Hausdorff locally convex barrelled spaces and all Hausdorff locally convex reflexive spaces). * All Hausdorff locally convex metrizable spaces.〔Schaefer (1999) p. 132〕 * All Hausdorff locally convex barreled spaces. * The product, locally convex direct sum, and the inductive limit of a family of Mackey spaces is a Mackey space.〔Schaefer (1999) p. 138〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Mackey space」の詳細全文を読む スポンサード リンク
|